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Communicated by G. Orlandini

Abstract. We use a recently improved version of the chiral nucleon-nucleon potential at next-to-next-to-
leading order to calculate the 1S0 pairing gap in isospin-symmetric nuclear matter. The pairing potential
consists of the long-range one- and two-pion exchange terms and two short-distance NN-contact couplings.
We find that the inclusion of the two-pion exchange at next-to-next-to-leading order reduces substantially
the cutoff dependence of the 1S0 pairing gap determined by solving a regularised BCS equation. Our
results are close to those obtained with the universal low-momentum nucleon-nucleon potential Vlow-k or
the phenomenological Gogny D1S force.

PACS. 13.75.Gx Pion-baryon interactions – 21.30.Cb Nuclear forces in vacuum – 21.30.Fe Forces in
hadronic systems and effective interactions – 21.60.-n Nuclear structure models and methods

The self-consistent mean-field framework, extended to
take into account the most important correlations, pro-
vides at present the only viable microscopic description of
structure phenomena in light and heavy nuclei over the
entire periodic table. A broad range of successful applica-
tions to nuclear structure and low-energy dynamics char-
acterizes mean-field models based on the Gogny interac-
tion, the Skyrme energy functional, and the relativistic
meson-exchange effective Lagrangian [1,2]. The effective
forces used in these models contain a moderate number of
free parameters that are adjusted to global properties of
a small set of spherical and stable nuclei, rather than to
the observables of free NN-scattering. In other words, even
though the global effective nuclear interactions model the
interaction between nucleons in the nuclear medium, they
are not necessarily related to any particular NN-potential.

On the other hand, a new approach in which nuclear
interactions are formulated in terms of effective field the-
ory [3–5] has recently been developed. Its key element is
a separation of long- and short-distance dynamics and
an ordering scheme in powers of small momenta. The
NN-potential, as constructed in chiral perturbation the-
ory, consists of the long-range contributions generated by
one-, two- and three-pion exchanges [6,7], and a set of
contact-terms encoding the short-distance dynamics. The
associated low-energy constants are adjusted to empiri-
cal NN-phase shifts and deuteron properties. It has also
been shown that their values can be understood in terms
of the heavy-mass resonance exchanges [8]. Furthermore,
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when isospin-breaking corrections are systematically in-
cluded, the chiral NN-potential reaches almost the same
accuracy as the more phenomenological “high-precision”
NN-potentials. This has been demonstrated by numerous
calculations of two- and few-nucleon systems [7].

Another line of approach, developed by the Stony
Brook group, applies renormalisation group arguments to
eliminate the high-momentum components from phase-
shift equivalent NN-potentials. By integrating out the
high-momentum components below a cutoff scale Λ ≈

2 fm−1, a universal low-momentum NN-potential Vlow-k
emerges [9]. Consequently, this potential operates only in
the subspace of nucleon states with momenta p ≤ Λ. The
pairing properties of nuclear matter derived from the po-
tential Vlow-k have been investigated recently in ref. [10].
Good agreement with the phenomenological Gogny pair-
ing interaction has been found for a wide range of nu-
clear densities. Calculations of nuclear matter have also
been performed using the potential Vlow-k. Whereas the
Brueckner-Hartree-Fock approximation applied to this
two-body potential leads to unsatisfactory results [11],
reasonable saturation properties of nuclear matter can
be obtained by including the effects of the leading chi-
ral three-nucleon interaction [12]. These findings are con-
sistent with the fact that nuclear pairing is primarily a
low-density phenomenon. The maximum of the 1S0 pair-
ing gap typically occurs at a density ρ ≈ ρ0/4, where ρ0 '

0.16 fm−3 denotes the nuclear-matter equilibrium density.
The purpose of the present paper is to investigate the

pairing properties of the chiral NN-potential. Quite gener-
ally, the momentum- and density-dependent pairing field
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∆(k, kf) in infinite nuclear matter is determined by the
solution of the BCS gap equation

∆(k, kf) = −
1

4π2

×

∫
∞

0

p2V (p, k)∆(p, kf)√
[E(p, kf)− E(kf , kf)]2 +∆(p, kf)2

dp . (1)

Here, V (p, k) represents the off-shell pairing potential in
momentum space, and E(p, kf) is the quasiparticle energy
with E(kf , kf) the corresponding Fermi energy.

The effective force in the pairing channel is generated
by the sum of all particle-particle irreducible Feynman
diagrams [13–15]. In most application to nuclear and neu-
tron matter, however, only the lowest-order term, which
corresponds to the bare NN-interaction, is retained [16].
Terms of higher order in the effective pairing interaction
represent screening corrections to the bare force, caused
by medium polarization effects. Numerous studies have
shown that polarization effects can have a pronounced in-
fluence on the calculated values of the pairing gaps (see,
for instance, refs. [17–19]). The influence of both the ver-
tex corrections to the pairing interaction, and the self-
energy corrections, on the properties of 1S0 pairing in
neutron and nuclear matter has recently been studied in
the framework of the generalized gap equation [20,21]. It
has been found that the two effects lead to a strong sup-
pression of the pairing correlations in neutron matter (the
pairing gap is reduced by more than 50% with respect to
the BCS prediction), whereas they cancel each other out to
a large extent in isospin-symmetric nuclear matter1. The
pairing correlation energy in finite nuclei can be calculated
in the local density approximation (LDA). LDA calcula-
tions with the Gogny D1 force have been compared with
exact Hartree-Fock-Bogoliubov (HFB) calculations of the
pairing correlation energy for many spherical nuclei [23].
Except for shell effects, the results of these calculations are
in close agreement with each other, and thus one should
not expect large effects from medium corrections not in-
cluded in the BCS limit.

For the pairing potential V (p, k) we employ the im-
proved version of the chiral NN-potential derived in
refs. [24,25]. An overly strong medium-range attraction in
the isoscalar central part of the chiral two-pion exchange
at the next-to-next-to-leading order, present in earlier ver-
sions of the chiral NN-potential [5], has been removed
by using the spectral function regularization method. Es-
sentially, this means that only ππ-intermediate states of
invariant mass below a scale Λ̃ (where the chiral effec-
tive field theory is applicable) are taken into account
in the pion-loop integrals, while shorter-range contribu-
tions should be represented by NN-contact interactions.
At this stage medium modifications of the pairing poten-

1 The situation has, however, been confused by the recent
results of ref. [22], where an enormous additional attraction in
symmetric nuclear matter has been obtained from resuming the
particle-hole bubble chain. It has therefore been argued that
the employed many-body approach is not converging and a
more controlled scheme like variational theory may be in order.

tial V (p, k) are not taken into account. In the chiral effec-
tive field theory these arise from additional (in-medium)
loops, which are suppressed at low Fermi momenta.

The (bare) chiral NN-potential used in the present
study consists of the one-pion exchange term, the NN-
contact interaction, and the irreducible two-pion exchange
term

V (p, k) = V (1π)(p, k) + V (ct)(p, k) + V (2π)(p, k) . (2)

This approximation for the two-nucleon potential is valid
for small values of the momenta p and k and it breaks
down for momenta above the chiral-symmetry-breaking
scale. An additional cutoff Λ, included by multiplying the
potential V (p, k) with a regulator function fΛ(p) [5],

V (p, k)→ fΛ(p)V (p, k)fΛ(k) , (3)

prevents the growth of the potential with increasing mo-
menta p and k. Following the procedure of ref. [25], we
employ the exponential regulator function

fΛ(p) = exp(−p6/Λ6) . (4)

Even though both cutoff parameters, Λ̃ and Λ, are intro-
duced to remove high-momentum components of the in-
teracting nucleon and pion fields, their roles are different.
The inclusion of Λ̃ removes the short-distance portion of
the two-pion exchange component, whereas the cutoff Λ
ensures that high-momentum nucleon states do not con-
tribute to the scattering process. If all terms in the EFT
expansion are included, low-energy observables should not
depend on the cutoff parameters. In practice, however,
the expansion is always truncated at some order. Conse-
quently, the observables depend on the cutoffs to some
extent, but this dependence should become weaker when
higher-order terms are included. Unless stated otherwise,
we use the value Λ = 550 MeV in the following calcula-
tions.

The one-pion exchange contribution in the S-wave
channel reads

V (1π)(p, k) =
g2
A

2f2
π

{
1−

m2
π

4pk
ln

m2
π + (p+ k)2

m2
π + (p− k)2

}
. (5)

The following numerical values are used for the nucleon
axial vector coupling constant gA, the weak pion decay
constant fπ, and the pion mass mπ: gA = 1.3, fπ =
92.4MeV, mπ = 135MeV.

The contact interaction comes from four-nucleon
contact-operators without and with two derivatives

V (ct)(p, k) =
C̃1S0

2π
+

C1S0

2π
(p2 + k2) . (6)

For each choice of the cutoff parameters, Λ̃ and Λ, the

low-energy constants C̃1S0
and C1S0

are determined by
a fit to the 1S0 phase-shifts below the inelastic NNπ-
threshold [25]. The cutoff dependence entering through
the regulator function fΛ(p) is then to a large extent can-

celled by that of the running low-energy constants C̃1S0
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and C1S0
. In the present calculation we employ the cen-

tral values of the low-energy constants at next-to-leading
order (NLO) and next-to-next-to-leading order (NNLO)
listed in table 4 of ref. [25]. These particular values of the

low-energy constants have been adjusted for Λ̃ = 600MeV
and Λ = 550MeV.

The irreducible two-pion exchange contribution is
most conveniently calculated via a twice subtracted dis-
persion relation

V (2π)(p, k) =
1

π

∫ Λ̃

2mπ

dµ Im[VC +WC − 2µ2VT − 2µ2WT ]

×

{
4

µ
−

4

µ3
(p2 + k2)−

µ

pk
ln

µ2 + (p+ k)2

µ2 + (p− k)2

}
. (7)

Here, ImVC , ImWC , ImVT , and ImWT are the imaginary
parts of the isoscalar central, isovector central, isoscalar
tensor, and isovector tensor NN-amplitudes. The weight-
ing function in curly brackets originates from projecting
the NN-potential onto the spin-singlet S-wave. The cutoff
parameter Λ̃, which restricts the spectral functions cal-
culated in chiral perturbation theory to their low-energy
domain of validity, is kept fixed throughout this work
at Λ̃ = 600 MeV. The imaginary parts of the isovector
central and isoscalar tensor NN-amplitudes contribute at
NLO, while the imaginary parts of the isoscalar central
and isovector tensor NN-amplitudes contribute at NNLO
in the chiral expansion. Explicitly, the spectral functions
corresponding to the two-pion exchange at NLO read

ImWC(iµ) =

√
µ2 − 4m2

π

3πµ(4fπ)4

[
4m2

π(1 + 4g2
A − 5g4

A)

+ µ2(23g4
A − 10g2

A − 1) +
48g4

Am
4
π

µ2 − 4m2
π

]
, (8)

ImVT (iµ) = −
6g4

A

√
µ2 − 4m2

π

πµ(4fπ)4
, (9)

and at NNLO

ImVC(iµ) =
3g2

A

64µf4
π

[
(4c1 − 2c3)m

2
π + c3 µ

2
]
(2m2

π − µ2) ,

(10)

ImWT (iµ) =
g2
Ac4

128µf4
π

(4m2
π − µ2) , (11)

with the low-energy constants: c1 = −0.81GeV−1, c3 =
−3.40GeV−1, and c4 = 3.40GeV−1 [24–26]. The two rela-
tively large low-energy constants c3,4 represent mainly ef-
fects from excitations of virtual ∆(1232)-isobars. For the
single-particle spectrum which enters the gap equation (1),
we employ the simple quadratic form

E(p, kf)− E(kf , kf) =
p2 − k2

f

2M∗(kf)
. (12)

Such an approximation is sufficient since momenta p
around kf give the dominant contribution to the integral
in eq. (1). The effective nucleon mass M ∗(kf) is taken

0.0 0.4 0.8 1.2 1.6

k
f
 (fm

-1
)

1

2

3

4

∆
f (

M
e

V
)

Λ=450 MeV
Λ=500 MeV
Λ=550 MeV
Λ=600 MeV
Λ=650 MeV

0

2

4

6

8

∆
f (

M
e

V
)

NLO

NNLO

Fig. 1. Pairing gap at the Fermi surface ∆f ≡ ∆(kf , kf) as a
function of the Fermi momentum, for different values of the
cutoff Λ, at NLO (upper panel) and NNLO (lower panel).

from a recent three-loop calculation of nuclear matter in-
cluding 2π-exchange with virtual ∆(1232)-isobar excita-
tion [27]. Note that in our pairing potential V (2π)(p, k)
the same πN∆-dynamics is effectively represented by the
low-energy constants c3,4.

As we have already mentioned, low-energy observables
should not depend sensitively on the value of the cutoff
Λ. In addition, this dependence should become weaker
when higher-order terms in the small momentum expan-
sion are included. To verify this feature, we have calculated
the pairing gaps ∆f ≡ ∆(kf , kf) in isospin-symmetric nu-
clear matter for several cutoffs Λ between 450MeV and
650MeV. For the low-energy constants C̃1S0

and C1S0
we

have used the central values listed in table 4 of ref. [25],

and the spectral function cutoff Λ̃ has been fixed at
Λ̃ = 600 MeV. Notice that no attempt has been made
to readjust the LECs when changing the cutoff Λ. The
results are displayed in fig. 1. At NLO the pairing gap
depends strongly on the value of Λ. When increasing the
cutoff from Λ = 450 MeV to Λ = 600MeV, the maximum
value of the pairing gap increases from ∆max

f = 0.7MeV
to ∆max

f = 5.8MeV, and the value of the Fermi mo-
mentum for which the pairing gap reaches its maximum
changes from kmax

f = 0.65 fm−1 to kmax
f = 0.95 fm−1. For

Λ = 650MeV the maximum value of the gap is well above
10MeV and the calculation obviously diverges. The re-
sults are much improved at NNLO. The position of the
maximum changes very little with increasing Λ and the
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Fig. 2. Pairing gaps at the Fermi surface ∆f = ∆(kf , kf)
in isospin-symmetric nuclear matter, calculated with the chi-
ral NN-potential (2) at NLO and NNLO (for Λ = 550MeV),
and with the effective Gogny interaction D1S [28]. The heavy
and light curves refer to calculations with noninteracting
and medium-modified single-particle spectra, respectively. The
panel on the right illustrates the density dependence of the
effective nucleon mass for the Gogny interaction and for the
chiral approach to nuclear matter of ref. [27].

value of the pairing gap at maximum increases less than
0.8MeV between Λ = 450MeV and Λ = 650MeV. Since
the gap at the Fermi surface is very sensitive to changes
in the effective pairing potential, this indicates reason-
able convergence for the EFT expansion. The improved
description of the pairing gap, when going from NLO to
NNLO, is naturally correlated with the improved descrip-
tion of the NN-phase shifts [5,16].

In the left panel of fig. 2 we compare the density de-
pendence of the pairing gaps in nuclear matter, calculated
by employing the chiral NN-potential and with the effec-
tive Gogny interaction. The solid and the dashed curves
correspond to the chiral potential at NLO and NNLO, re-
spectively. The dash-dotted curve is the pairing gap calcu-
lated with the D1S Gogny interaction [28]. Similar to the
analysis of ref. [10], where the Gogny pairing gaps were
compared with those calculated with the low-momentum
Vlow-k interaction extracted from realistic forces, we have
calculated the pairing gaps using both the noninteracting
single-particle spectra (heavy curves), and the medium-
modified single-particle spectra (light curves). The
medium-modified single-particle spectra are computed in
the Hartree-Fock approximation for the Gogny interac-
tion, and by using eq. (12) for the chiral NN-potential.
First, we notice that for the noninteracting single-particle
spectra there is a qualitative and, at low densities kf ≤

0.8 fm−1, even a quantitative agreement between the pair-
ing gaps calculated with the chiral NN-potential and the
effective Gogny interaction. The inclusion of the NNLO
contribution increases the value of the pairing gap at maxi-
mum and shifts the position of the maximum to a slightly
higher value of kf , in closer agreement with the Gogny
pairing gap. For kf > 1 fm−1 and closer to saturation den-
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Fig. 3. Momentum dependence of the pairing potential
V (p, k): chiral NN-potential at NLO and NNLO, and the
Gogny DS1 interaction, for three different values of the mo-
mentum k = 0.4, 0.8, 1.2 fm−1. In the panel on the right the
corresponding diagonal matrix elements V (k, k) are shown as
functions of the momentum k.

sity, we find a more pronounced difference between the
Gogny pairing gap and the gaps calculated with the chiral
NN-potential. This difference with respect to the Gogny
pairing gap at higher densities has also been observed for
other bare NN-interactions [29,30,10].

The effective nucleon mass is reduced in the nuclear
medium. This results in a lower density of states around
the Fermi surface and, hence, in weaker pairing correla-
tions. The reduction of the pairing gap is much more pro-
nounced for the Gogny effective interaction than for the
chiral NN-potential. This is caused by a much stronger re-
duction of the effective mass for the former interaction in
the relevant range of densities 0.4 fm−1 ≤ kf ≤ 1.2 fm−1.
The effective nucleon mass M∗(kf) from the chiral three-
loop calculation [27], and for the D1S Gogny effective in-
teraction are shown in the right panel of fig. 2. The den-
sity dependence is very different in the two cases, and this
means that one should not, at least on the quantitative
level, compare the corresponding pairing gaps calculated
with medium-modified single-nucleon spectra.

In fig. 3 we plot the momentum dependence of the
pairing potentials V (p, k) for three different values of the
momenta: k = 0.4, 0.8, 1.2 fm−1. While the Gogny inter-
action and the chiral NN-potential at NLO display only a
qualitatively similar momentum dependence, the inclusion
of the NNLO contributions brings the chiral NN-potential
in remarkable agreement with the Gogny D1S interaction.
The same is true and even more pronounced for the diag-
onal matrix elements V (k, k) shown in the right panel of
fig. 3. A similar result has been observed for the potential
Vlow-k in ref. [10].

In conclusion, we have presented a study of the pairing
properties of the chiral NN-potential. This potential con-
sists of the long-range one- and two-pion exchange terms,
and it includes two short-distance NN-contact terms. Our
main result is that the inclusion of the two-pion exchange
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at the next-to-next-to-leading order reduces substantially
the cutoff dependence of the 1S0 pairing gap, indicating
reasonable convergence of the small momentum expan-
sion. In addition, the inclusion of the NNLO contributions
brings the chiral NN-potential in remarkable agreement
with the Gogny D1S interaction (the “standard” nuclear
pairing force) and the universal low-momentum potential
Vlow-k. Clearly, once the chiral NN-potential reaches a cer-
tain accuracy in reproducing empirical NN-phase shifts it
represents also a realistic low-momentum interaction. In
the future we plan to include higher-order terms in the
chiral NN-potential and extend the study of the pairing
properties by including medium modifications, such as the
polarization effects, vertex corrections and Pauli-blocking
effects. The chiral effective field theory at finite density
represents a systematic framework for such extension.

We thank P. Ring for useful discussions and E. Epelbaum and
S. Fritsch for supplying numerical results.
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